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by

Gregory M. Constantine
Department of Mathematics

Indiana University
Bloomington, Indiana 47405

(In amintirea lui Grigore)

SUMMARY

Schur-optimality is defined (in the general setting of

a linear model) as a generalization of the well-known D-,

A- and E-optimality criteria. Techniques to establish

Schur-optimality are outlined, based chiefly on a process

of averaging information matrices and on vector majoriza-

tion. A design with a completely symmetric information

matrix of maximal trace is shown to be Schur-optimal.

A design with an information matrix of maximal trace and

exactly two distinct nonzero eigenvalues is proved Schur-

better than a large class of designs. One description

of a subcollection of designs over which Schur-optimality

holds is given only in terms of the diagonal elements of

the information matrices. Consequences of this are then

examined in the setting of block designs.
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1.. INTRODUCTION

Oftentimes, in experiments, interest arises in estimating

parameters with equal (or near equal) precision. A design

balanced as much as possible for the parameters of interest

is intuitively felt to be the right choice since no para-

meter ought to be left to disadvantage. But precision (for-

mulated in terms of the covariance matrix of the estimates)

turns out not to be related to the concept of balance nei-

ther in a direct way'nor in an obvious one. While balance

relates directly to the entries of the information matrix,

precision is closely connected to its spectrum. In the

present paper a connection between balance and precision is

made with the help of the concept of Schur-optimality.

Certain convex operations on the entries of the information

matrix (as trends for balance) turn out to be compatible

with the Schur-convex functions defined on the spectrum

of the information matrix, as measures of precision. By

compatibility we roughly mean that the more balanced a

design tends to be, the closer to a minimum the values of

the Schur-convex functions get. Our goal is to eventually find

a design for which these Schur-convex functions reach'their

minima. As we define it, the concept of Schur-optimality is

very strong and a design can only seldom be proved Schur-

optimal over the collection of all possible designs. It is

however quite convenient to show that whenever a design with



* many desirable symmetries exists, it is better (in a very

strong sense) than a large number of less symmetric designs.

This is the main scope of the paper.

A design d describes the way a certain stastical

experiment is to be conducted. It generally specifies

where the observations are to be taken and in what propor-

tion at each location. The design is, within limits,

subject to choice by the experimenter.

Let Q be the collection of all possible designs. For

d E D we assume the following expected linear response:

E(Y) = Xd 0

where Y is the mxl vector of uncorrelated observations
2

with common variance a , Xd is the design matrix of dim-

ension nxp and 9 is a pyl vector of unknown parameters.

Usually statistical interest arises in estimating linear

functions of 01 , a vxl subvector of 0 . Then the reduced

normal equations for 0 can be written as

Cd e1 = dc Y

with Qd a mxv matrix and Cd a vxv nonnegative def-

inite matrix, called the information matrix of the design d

(for 0I ). Unless otherwise specified, all the information

matrices Cd  in the sequel will be with reference to the sub-

vector 01 .

In the block design setting, for example, we are to

compare v varieties (labeled 1,2,...,v) via b blocks



of size k (v). A design d in this case is a kxb array

with varieties as entries and blocks as columns. The collec-

tion of all designs is denoted by (IV,b, .The usual additive

model, under which these designs are considered, specifies

the expectation on variety i in block j as Qi + f1

where a1  is the (unknown) effect of variety i and j

is the (unknown) effect of the jth block. Let

s - (a 1,..., -tv ,  3 "- 03 )'I

be the vector of unknown parameters. We are interested

only in the subvector O = (a1 .. cza)' of variety effects.

The information matrix for a , when the design d is used

for estimation, is

Cd = diag(rd ... ,rdv N dNNdd " dv k d d

where rdi is the number of replications of variety i in

diij
d and N=(ndi ), with n signifying the number of times

variety i occurs in block j. The above information matrix

is nonnegative definite with row sums zero.for all d c nv,b,k.

The row sums being zero reflects the fact that only linear

contrasts (i.e. functions t'a with t'l = , where 1 =

are estimable under any design d. This is very often the

case in discrete settings. The collection of information ma-

trices Cd , with d c 0v b,k has therefore a common kernel

generated by 1

Denote by u(Cd) the nondecreasingly ordered vector of

eigenvalues of Cd outside an eventual common kernel (which
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is of no help in distinguishing among designs ). Let u(Cd)

be a vector of length n( v). In most relevant instances

n is either v or v-1. Designs d for which "(Cd )

has some zero entries are ruled out as bad designs, generally

because they are disconnected. We shall therefore focus our

attention to designs d for which u(Cd) has all its entries

positive. In summary, to a design d c 0 we associate an in-

formation matrix Cd and the nondecreasingly ordered vector

P(Cd) of its eigenvalues associated with the eigenvectors

of Cd outside a kernel common to all Cd with d E 0, i.e.,

u(Cd) = 0 < Pd '-

Statistical optimality criteria (e.g. D-,A-,.-criteria)

were defined on the collection of vectors .(Cd) , with d e 0

by Ehrenfeld (1955) and Kiefer (1959). A design d* is called

1- 1 -1V- 1i --I -- i
D-,A- or E-optimal if it minimizes T p Pdi or

1=) di 1=1
i respectively, over all dc 0. Minimization of functions

v-I
of the form F f(1"di ) with f convex has been considered

by Kiefer (1975) and Cheng (1978). While D- and A-criteria

can be easily expressed in this latter form, the E-criterion

cannot be expressed in such form. It can only be recovered

as a limit of such functions. In the first part of this paper

V-i
we extend criteria of the form F f(Vdi) with f convex

i=l

to *(P(Cd)) with % Schur-convex and nonincreasing in its ar-

guments. The three functions associated with D-,A- and E-cri-
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teria are all genuine instances of Schur-convex functions which

are nonincreasing in their.arguments. We then define the concept

of a Schur-optimal design and, in section 3, outline general

methods of establishing Schur-optimality. The techniques which

we mention rely chiefly on convexity (averaging information

matrices) and on vector majorization. In the last section

of the paper we illustrate the material presented in section 3

by showing that a design with a completely symmetric matrix of

maximal trace is Schur-optimal. This result very much resembles

Proposition 1 of Kiefer (1975) on Universal optimality. There

is no direct relationship between Schur-optimality and Universal

optimality but the concepts are discussed comparatively in sec-

tion 4. We then show that a design with an information matrix

of maximal trace and exactly two distinct nonzero eigenvalues

is Schur-optimal over classes of designs which satisfy a

verifiable condition on the entries of their information matrices.

For a subclass of designs a sufficient condition is conve-

niently formulated only in terms of the diagonal entries of

the information matrices. In the block design setting corol-

laries are derived for binary designs with exactly two nonzero

eigenvalues. Examples of such designs are the Partially Bal-

anced Incomplete Block designs with two associate classes, as

well as extended and abridged both Balanced Incomplete Block

designs and Group Divisible designs.

.. . .._ _ _ _
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2. DEFINITIONS

Let us recall the following:

A square matrix is called doubly stochastic if it has

nonnegative entries with row and column sums equal to 1.

Let I be an interval on the real line R . A function ?

defined on In  with real values is called Schur-convex if

,(Sx) W (x)

for all X E In and all S doubly stochastic.

A real function defined on In is said to be

nonincreasing in its arguments if it is a nonincreasing

function when restricted to each of its arguments.

A function F defined on In is called symmetric if

F(Px) = F(x) for all xE I n and all permutation matrices P.

A function 4 defined on a convex set A in R n with

real values is called convex if

(cLx+(l-c)y) < O(x) + (l-a )(y)

for all X,y CA and all 0 a I.

By observing that a permutation matrix (and its inverse)

is doubly stochastic one can see that a Schur-convex function

is always symmetric. The converse is of course false, but

the well-known result of Birkhoff and Von Neumann which states

that the collection of doubly stochastic matrices is the convex

span of permutation matrices provides us with many examples of

Schur-convex functions. By this result it immediately fol-

lows that any symmetric and convex function is Schur-convex.

Lastly, a Schur-convex function need not be convex, e.g.,
(x I) {X_ 1/ 2

1'X 1-~ 2
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Let b be a constant such that Pd. b for all 3. K I i n

arid alld c f, e.g., b can be the maximal trace of Cd with

d r 0. The constant b is always finite, either because 0

is finite or because of arguments involving compactness.

Let I = [O,b] . Then u(Cd) I n for all d c 0. So we

can define *(U(Cd)) for * Schur-convex.

For convenience we set by definition *(Cd) be *(W(Cd))

for , Schur-convex and nonincreasing in its arguments. We

are now ready to define Schur-optimality.

Definition 2.1. A design d* is said to be Schur-better than

another design d (notation d* -P d) if

(cd ) - d )

for all Schur-convex functions i nonincreasing in their ar-

guments.

Definition 2.2. A design d* in 0 is called Schur-optimal

over 11 if *(Cd*) < (Cd)

for all Schur-convex functions i nonincreasing in their ar-

guments and all designs d in D

n n -1
Letting *(cd) be -log 7, Wdi , . di ' -Vdl

i=1 i=l

we obtain the well-known functions associated with D-,A- and

E-optimality criteria, respectively. The above functions are

Schur-convex because they all are symmetric and convex.
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n
*(Cd) = f(Udi) with f convex nonincreasing and the

criteria defined by Kiefer (1974) are also Schur-convex for

the same reason. It is clear that all these functions are

nonincreasing in their arguments. Note that the E-criterion

is not a limiting case when formulated in terms of Schur-

convexity.

Schur-optimality is a very strong criterion, as it im-

plies all of the above. As the above examples indicate, it

it probably quite satisfactory to look at just symmetric

and convex functions of eigenvalues, rather than Schur-convex.

But the techniques that we shall outline readily apply to

Schur-convex functions and this motivates the extension.

3. ON AVERAGING AND MAJORIZATION

The principal tool that we shall employ when searching

for Schur-optimal designs is contained in Theorem 3.2. This

theorem relies, in turn, on a fundamental result on majori-

zation due to Hardy, Littlewood and Polya (19 34), which was

later extended by Ostrowski (1952).

Whenever we write x<y for two vectors x=(xltx 2,...,xn)

and y=(y,y 2 ,...,yn) in In we assume that

1l  x2  "<Xn ' Yl Y2 ""° n

m m
and that lY, < xi for all 1 < m < n.

i= -i- -

If x 4 y we say that y majorizes x.
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The useful concept of majorization has been considered in

the context of design optimality by Cheng (1979) to block designs

with 4 varieties and an arbitrary number of blocks.

The following result can be easily derived from Ostrow-

ski (195 2):

Theorem 3.1. Let x,yIn. If X g y then *(x) *(y)

for all Schur-convex functions * nonincreasing in their

arguments.

Denote by a(A) the nondecreasingly ordered vector of

eigenvalues of the matrix A. The result we state next is

essentially due to Ky Fan (1951) although he has not formulated

it in this form.

Lemma 3.1. Let A i  (li m ) be nonnegative definite matri-

ces. Then a i Aj)  a. o(A. )

whereO a land E 1.

Before we proceed, we need to introduce some notation.

For a vxv matrix A and a permutation o on the symbols

1,2,...,v we denote by AO the matrix obtained from A

after performing the row and (same) column permutations as

indicated by a . That is A0 - PAP' , where P is the

vxv matrix representation of a . Since A and AO are

, , , ,
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similar matrices, their ordered spectra a(A) and a(O )

are identical for any permutation a . We say that A0

is a conjugate of A.

The following is an immediate but useful consequence

(see also Magda (1979), Lemma 3.2.1).

Propostion 3.1. Any convex combination r aiA' of con-

jugates of a nonnegative definite matrix A satisfies

cT( £ziA 1l ) -4 O(A)

Now we can state and prove

Theorem 3.2. A design d* e O is Schur-better than d

(d* ) d) if

o(cd*) ( aCd)

ior some convex combination of conjugates of Cd.

Proof. Firstly, observe that by Theorem 3.1 P(Cd*) 4 O(Cd )

implies d* > d. Since the last n components of i.(Cd)

and o(Cd) are the same and the first v-n components of

O(Cd) are zero (for all d e o) P(Cd*) - U(Cd ) is equivalent

with O(Cd*) 0 a(Cd) . So o(Cd*) s O(Cd ) implies d* * d.

Using the assumption and then Proposition 3.1 we have

o(cd*) a L £ ci 0(cC) i o(Cd)"

ai
The last equality is true because Cd and Cd are con-

jugates and hence have the same spectrum. This concludes the

proof.
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Theorem 3.2 is helpful.in the following way. Suppose

that a design d* e 0 with a lot of symmetries is believed

optimal in some broad sense for the intuitive reasons men-

tioned in the introduction. It would be very satisfactory

to show that for a large class of designs d e 0, d* is

Schur-better than d (i.e. d* ! d). Because of its balance

d* has an information matrix for which o(Cd*) can be

computed. But a(Cd) for an arbitrary d is impossible

to calculate. It is very often possible, however, to compute

C( L aja(C1i))for a convex combination of certain conju-
i

gates of Cd. The entries in the convex combination tend

to even out and this generally facilitates the computation of

the spectrum. The spectrum of the convex combination is a

helpful intermediary between a(Cd*) and a(Cd) and the

content of Theorem 3.2 becomes of assistance. We shall il-

lustrate this in the next section.

Of particular importance is the average Cd 1 m Cd
d l d

which we call an averaged version of Cd. We will be making

extensive use of averaged versions in the next section and

find it convenient to rely on the following:

Theorem 3.3. A design d* e 0 is Schur-better than d if

A



13.

0(Cd*) c y(d )  for some averaged version Cd of Cd.

Clearly d* is Schur-optimal over 0 if it is Schur-

better than all the designs d in 0 .

4. RESULTS ON SCHUR-OPTIMALITY

Let d* 6 0 be a design for which u(Cd.) has all

its entries equal to Ud*. Assume also that the trace of

Cd  is at most equal to the trace of Cd*. for all d _ 0

We claim that p(Cd*) 4 U(Cd)" Let u(Cd) = (Vdl,...,Udn)'.

n
Then if E dI > kpd* for some k <i n we have udi > Ud*I=1

n
for all I I k + 1 and hence also E Udi 2 (n-k)Ud.

i=k+l
k n

This implies that trCd = ' Udi + E Udi > kud* + (n-k)ud. -
i=l i=k+1

= trCd*,a contradiction. We therefore have u(Cd*) 4 U(Cd).
Theorem 3.1 gives now

Theorem 4.1. If there exists a design d* in 0 such that

P(Cd*) has all its entries equal and trace Cd* > trace Cd,
for all d e 1 , then d* is Schur-optimal over (I

There are two particularly useful consequences. Before

we state them, let us call a matrix completely symmetric

if all its diagonal entries are equal and all its off-diago-

nals are also equal. The following two propositions readily
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satisfy the assumptions of Theorem 4.1.

Propostion 4.1. Let 0 consist of designs d for which

Cd has zero row sums. Then a design d* C 0 with a completely

symmetric matrix of maximal trace is Schur-optimal over ik

ProDostion 4.2. If d*c n is a design whose information

matrix is a multiple of the identity matrix and has maximal

trace, then d* is Schur-optimal over 0

The above propostions are reformulations of Proposition 1

and Proposition 1' of Kiefer (1975) in terms of Schur-

optimality. Kiefer phrased the aforementioned results in

terms of Universal-optimality, a concept that proves to be

very valuable especially when dealing with optimality in

regular settings which permit symmetric designs. The essen-

tial difference between Universal-optimality and Schur-opti-

mality lies in the relaxation of monotonicity in a scalar to

that in each individual component of .(Cd) . This permits

immediate connections to the results on hermitian matrices by

Ky Fan and results on majorization by Hardy, Littlewood and

Polya. Schur-optimality is applicable in less regular set-

tings especially when showing that a design with desirable

symmetries is Schur-better than large classes of less sym-

metric designs. We illustrate this next.
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Throughout the remainder of the paper, 0 is assumed to

consist of designs d for which the information matrix Cd

has row sums zero. Moreover, u(Cd) will be a vector with

v-1 components, as is the case in most discrete settings.

For a m~m matrix C = (ci) , let us denote by b(C)

m
the quantity (M-i) E " 'r cij • We can now state and

prove

Theorem 4.2. If 0 contains a design d* such that u(Cd*)

has exactly two distinct components, Ud*1 < Wd*2 , with

Pd*1 of multiplicity r ard Ud*2 of multiplicity s

(r+s = v-1), then d* is Schur-optimal over the collection

of designs d in 91 which satisfy Trace Cd < Trace Cd*

and either (a) or (b) below:

(a) &(Md) K r(r+l) Ud*i for some (r+l)W(r+l) principal

minor Md of Cd.

(b) &(Md) > s(s+1) ud.2 for some (s+l)x(s+l) prin-

cipal minor Md of Cd .

Proof: Let d E 0 satisfy (a). Write the information matrix

Cd in such a way that Md is in the upper left hand cor-

ner. Average Cd over the first r+1 rows and columns

and then over the remaining v-r-1 rows and columns. Let
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Cd be the average version of Cd so obtained. Explicitly

! " Iai
Cdi 1. T

where ci is a 'product of a permutation on the first

r+1 rows and columns of r I with a permutation on the last

v-r-1 rows and columns. The shape of Cd is

(ad+cd)I - adJ -1d J

Cd=

-13 dJ i(bd+Vd)I- VdJ

where the upper left hand corner is (r+l)x(r+l) and I

and J are respectively the identity matrix and the matrix

with all its entries 1. By adding the vxv matrix PdJ

to Cd' the eigenvalues of Cd are found to be 0, ad+od ,

Vf3d and bd+yd of multiplicities 1, r, I and v-r-2

respectively. By Propostion 3.1 all these eigenvalues are

nonnegative. Next we show that U(Cd*) s u(Cd). To achieve

this let us denote by U(-d) the vector whose first r entries

are equal to the average of the first r entries of U( d )  I

and whose last s entries are equal to the average of the

last s entries of u(Cd) . It is easy to see that

P(6d) • Since a(Md) = r(r+l)(ad+ad) and since d
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satisfies (a) we have ad + ad Pd*1" This implies that
each of the first r entries of P( d)  is at most Pd*l

Since Trace Cd K Trace Cd*, it now follows without much

difficulty that u(Cd.) 4 u( d ) • This shows that u(Cd*) 4 u(C d )

and hence also that o(Cd*) ' . By Theorem 3.3 we

now conclude that d* is Schur-better than d. When d e 0

satisfies (b) a similar averaging yields d* > d. This con-

cludes the proof of the theorem.

One important remark is in order here. Theorem 4.2 does

not impose any condition on having Vd*l and Pd*2 close

together. It is easy to see, however, that when they are close

to each other more designs satisfy (a) or (b) in the

theorem and hence d* is Schur-optimal over a larger col-

lection of designs. A convenient way to ensure the closeness

of Ud.1 and Ud.2 is to demand that Trace(C2 d) L Trace(C2 d )

for all d e n . Whenever such a design exists, Theorem 4.2

ensures its Schur-optimality over large subfamilies of de-

signs in 0 . This is a helpful fact, as it eases the search

for the D-.A- and E-optimal designs in nl

Another important observation relates to the selection of

a principal minor Md for which (b) holds. Since Cd

is nonnegative definite the diagonal elements of Cd are

relatively large. Moreover, the diagonal elements of Md

carry a lot of weight (each one is multiplied by s) in h(Md)
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The off-diagonals of 1d are therefore of much less importanceMd
when it comes to maximizing 6(Md) over M . Whence it

d
makes sense to first choose the principal minor Md of

maximal trace and check if condition (b) in the above theorem

is satisfied for this particular principal minor.

There is one special case of Theorem 4.2 that deserves

mention. It is the setting in which all the designs in 0

have information matrices with nonpositive off-diagonals.

Such is the case in the setting of block designs or two way

elimination, for example.

Denote by c di j the entries of the information matrix

C in such a way that CdlI _ Cd 2 2  .

Theorem 4.3. Let 0 consist of designs whose information

matrices have zero row sums and nonpositive off-diagonals.

If n contains a design d* which satisfies the assump-

tions of Theorem 4.2 then d* is Schur-optimal over the

class of designs d in 0 which satisfy either

r+1 v
F Cdii _ r d*l or Cdii> (s+1) Pd*Z

i= 1 i-v-S

Proof: Since c dij / 0, for i~j, and the row sums of Cd

r+1
are zero, we have 6(Md) = r= 1 Cdii -

d im dii Cdii
r+1 r+1 r+1

r t Cdii + :1Cdii - (ril)t Cdii r(r+l) d*l where

i... -i.. .i ,,,i ,,,,i -i ,'
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Md is the (r+l)A(r+l) principal minor of Cd whose diagonal

entries are C di , i = 1,2,...,r+1. We thus satisfy con-

dition (a) in Theorem 4.2, and hence d* d. By letting

Md be the (s+l)X(s+l) principal minor in the lower right

hand corner of Cd we have (by simply using the fact that
V

Cdij . 0 for i + j) A(Md) 3 Z Cdii > s(8+1) WVj*2
i=V-S

We are now done by (b) of Theorem 4.2. This ends the proof.

Theorem 4.2 and 4.3 have a number of consequences when

considered under specific linear models. We shall examine

next a corollary in the block design setting.

Order the replication numbers in a design d e Cv,b,k

such that rdl < rd2 - .... < rdv . By observing that the

ith diagonal entry of the information matrix of a binary

k-i
design design d is k rdi, one has the following refor-

mulation of Theorem 4.2 in terms of the replication numbers

rdi.

Corollary 4.1. If d* is a binary design in or,b,k

whose information matrix has exactly two distinct nonzero

eigenvalues, Ud*l < Vd*2 the former being of multipli-

city r and the latter of multiplicity s (r+s = v-1),

then d* is Schur-better than all the binary designs d

which satisfy either
v

r+i I
Flr VUd. 1  or di Ud 2

i-i di k-1 i,-- k-1
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Designs d* which satisfy the assumptions of

Theorem 4.1 exist in many settings. Among block designs
i

we mention the Partially Balanced Incomplete Block designs

with two associate classes, extended and abridged Balanced

Incomplete Block designs with any number of disjoint bi-

nary blocks and Group Divisible designs with X2 = X, t 1

adjointed or abridged by disjoint binary blocks compatible

with the partition of the groups (see Constantine (1980)).

When a pair of varieties occurs in either X or X+1

blocks (which ensures the closeness of Vd*1 and Pd*z ),

Theorem 4.2 asserts that all these designs are Schur-optimal

over large classes of designs. We now examine one such

instance more closely.

Let d* ' Ov,bk be a Group Divisible design with )2 = X1 + 1

(where XI is the number of blocks containing two varieties

that are in the same group) and m groups of size n.

Examples show that d* is not Schur-optimal (but very likely

both D- and A-optimal) over all designs. For m=2 a

very strong optimality statement (including D- and A-)

was proved by Cheng (1978); the E-optimality has been ob-

tained by Takeuchi (1961) for general m.

For a design d e av,b,k let NdNd = (Xcii) . Let

furthermore (M±)i,...,m be an arbitrary partition of
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the v varieties in m groups of size n each and set

I v 1 m
rd = (k rdi - Xdi) and Xd c Z Xdij

v(n-1) t=-- iMj

It is not very hard to show that the matrix kOd having

m diagonal blocks of size n, all equal to (rd+Xd)I - XdJ

and with all the entries outside these blocks equal, is an

averaged version of kCd. One can show (see Magda(1979))

that rd + Xd is an eigenvalue of kC d and has multiplicity

v-m. Since d* is binary, we have rd ' (k-1)r where r

is the replication of any variety in d*. Now, if Xd

we have rd + Xd ! (k-1)r + ),I But (k-l)r + x,

is the smallest eigenvalue of kCd* and it has multiplicity

v-m. With the assumption that Xd X1 and using the fact

that kC d* has maximal trace, it can be now readily ver-

ified that a(C. c() • By Theorem 3.3 we therefore

have:

Theorem 4.3. A Group Divisible design d* e 0 withv,b,k

m groups of size n and x. = X, + I is Schur-optimal

over the class of designs d which satisfy X d - X

for )cd associated with some partition of the varieties.
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